Über die elektrische Leitungsfähigkeit der Lösungen neutraler Salze.

(Mit 1 Holzschnitt.)

Von Gustav Jäger.

(Aus dem physik.-chem. Laboratorium der k. k. Universität in Wien.)

(Vorgelegt in der Sitzung am 7. Juli 1887.)

Die Leitungsfähigkeit der Elektrolyte ist gegenwärtig Gegenstand einer lebhaften Discussion der Physiker. Herr Dr. J. Moser schlug mir vor, einen Beitrag zur Klärung der letzteren dadurch zu liefern, dass ich die Schwermetallsalze untersuchte. Diese gestatten nämlich ausser anderen Vortheilen die Anwendung sogenannter unpolarisirbarer Elektroden, d. h. Elektroden aus dem der Lösung entsprechenden Metall. Hierdurch wird eine constante Polarisation erzielt. Ausserdem wandte ich die Nullmethode an, was durch ein Differentialgalvanometor erreicht wurde. Hierbei war in dem einen Zweigstrom desselben ein constanter Widerstand eingeschaltet, der grösser war als jener der Lösung, während die Lösung selbst und ein variabler Widerstand den anderen Stromzweig bildeten. Es wurde also ein constanter Strom hergestellt, da auch die elektromotorische Kraft constant war. Zur Aufnahme der Lösung diente ein graduirter Glascylinder, dessen Boden durch die eine Elektrode ersetzt wurde, während die andere beweglich im Innern des Cylinders angebracht war. Machte ich nun zwei Messungen bei verschiedener Distanz der Elektroden und bildete die Differenz der Widerstände, so erhielt ich sofort den wahren Werth des Widerstandes jenes Stückes der Lösung, welches der Verschiebung der Elektroden entsprach, weil ich dadurch die constante Polarisation eleminirte. Sämmtliche untersuchten Lösungen reducirte ich auf einen Cylinder vom Querschnitt 1 Ctm. und der Höhe 1 Ctm.

Die Lösung enthielt ¹/₁₀, ¹/₂₀ etc. Grm. Valenz des Elektrolyten in einem Liter Wasser. Ich erhielt für die Widerstände, ausgedrückt in Ohms, folgende Tabelle:

Tabelle der Widerstände.

(Ohm)	¹ / ₂₀ Grm. Val.	^{1/40} Grm. Val.	¹ / ₈₀ Grm. Val.	¹ / ₁₆₀ Grm. Val.	¹ / ₃₂₀ Grm. Val.	^{1/640} Grm. Val.	^{1/1280} Grm. Val.
Pb(NO ₃) ₂	251	478	898,	1700	-	_	_
$Pb(C_2H_3O_2)_2$	_		1646	2703	4512	7791	13875
AgNO ₃	_	_	354	677	1311	2435	_
Ag_2SO_4	_	_		853	1607	2993	5642
$AgC_2H_3O_2$			-	916	1751	3293	6199
ZnSO ₄	344	591	1025	1789	3117	_	_
ZnBr ₂	_	243	480	950	1995	4158	8689
ZnJ ₂		388	761	1448	2767	_	_
CuSO ₄	364	628	1084	1879	3314	61 03	10845
$\mathrm{Cu}(\mathrm{C_2H_3O_2})_2 \ldots \ldots$	636	1019	1649	2793		_	_

Sämmtliche Widerstände wurden bei einer Temperatur von nahe $22\,^{\circ}$ C. gemessen.

Bilde ich nun die reciproken Werthe der Widerstände, so erhalte ich folgende Tabelle der Leitungsfähigkeiten, wobei die angegebenen Zahlen mit 10⁻⁶ zu multipliciren sind.

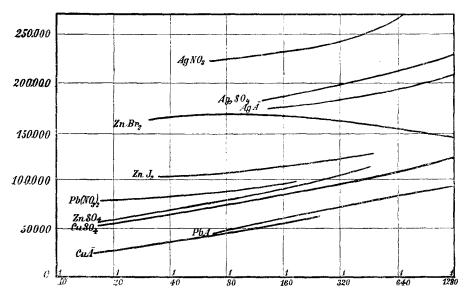
Tabelle der Leitungsfähigkeiten.

	$V_{20}^{1/20}$ Grm. V_{3}	$\frac{1/40}{\mathrm{Val.}}$ Grm.	¹ / ₈₀ Grm. Val.	1/160 Grm. Val.	^{1/320} Grm. Val.	¹ / ₆₄₀ Grm. Val.	1/ ₁₂₈₀ Grm. Val.
$Pb(NO_3)_2$	3984	2092	1114	588	_		
$\mathrm{Pb}(\mathrm{C}_2\mathrm{H}_3\mathrm{O}_2)_2$	_		608	37 0	222	128	72
AgNO ₃	_		2825	1477	763	411	
Ag_2SO_4				1172	62 2	334	177
$AgC_2H_3O_2$	_	!		1092	571	304	161
ZnSO ₄	2907	1692	976	559	321	_	-
\mathbf{Z} n \mathbf{Br}_2	-	4115	2083	1053	501	241	115
ZnJ_2	_ :	2577	1314	691	361	_	
CuSO4	2747	1592	92 3	532	302	164	92
$\operatorname{Cu}(\operatorname{C}_2\operatorname{H}_3\operatorname{O}_2)_2\ldots\ldots$	1572	981	606	358	_		-
	;				ļ		

Es ist nun schwer, direct aus den absoluten Grössen der Leitungsfähigkeiten die Beziehungen zwischen Salzgehalt und Leitungsfähigkeit herauszulesen. Ich berechnete daher die jeweilige relative Leitungsfähigkeit der Valenz, indem ich die absolute Leitungsfähigkeit durch die entsprechende Lösungszahl dividirte und erhielt dadurch folgende

Tabono doi totaation horangalamgaciton doi taranga									
	$_{ m Val}^{1/20}{ m Grm.}$	$^{1/40}$ Grm. $^{ m Val}$.	$^{1/80}_{ m Val.}$ Grm.	¹ / ₁₆₀ Grm. Val.	$^{1/320}_{ m Val}$ Grm.	$^{1/640}_{ m Val.}$ Grm.	$^{\mathrm{J}/_{6280}}_{\mathrm{Val.}}$ Grm.		
$Pb(NO_3)_2$	79680	83680	89120	94080			_		
$Pb(C_2H_3O_2)_2$	_	_	48640	59200	71 040	81920	92160		
AgNO ₃	_	_	22 6 00 0	23 632 0	244160	263040			
$Ag_2SO_4 \dots \dots$		_		187520	199040	213760	226560		
$AgC_2H_3O_2$		_		174720	182720	194560	206080		
ZnSO ₄	5814	67680	78080	89440	102720	_	_		
ZnBr ₂		164 600	16664 0	1684 80	160320	154 240	147200		
ZnJ_2	_	103080	105120	11056 0	1155 20	_			
CuSO ₄	54940	63680	73840	85120	96640	104960	117760		
$Cu(C_2H_3O_2)_2\dots$	31440	39240	48480	57280	_		-		
		!		İ					

Tabelle der relativen Leitungsfähigkeiten der Valenz.


Nach dieser Tabelle fertigte ich die folgenden Curven der relativen Leitungsfähigkeiten der Valenz an, derart, dass ich als Abscissen die Lösungen und als Ordinaten die zugehörigen relativen Leitungsfähigkeiten auftrug.

Die Mehrzahl der Curven scheint mit wachsender Verdünnung einen linearen Verlauf zu nehmen, aber als ich versuchte, die Leitungsfähigkeit durch eine Formel von der Art

$$L = \alpha m + \beta m^2$$

darzustellen, so musste ich wahrnehmen, dass eine derartige Formel selbst bei stark verdünnten Lösungen den Gang der Leitungsfähigkeit nicht genügend charakterisiren kann, da ich für α bezüglich β zwar annähernd, aber doch nicht hinlänglich übereinstimmende Werthe bekam, wenn ich aus den Leitungsfähigkeiten verschiedener Lösungen desselben Salzes diese beiden

Grössen berechnete. Am auffallendsten ist das Verhalten des Bromzinks, dessen relative Leitungsfähigkeit ein Maximum wird und dann ziemlich rasch wieder abwärts geht.

Was nun den Hauptpunkt der eingans erwähnten Discussion betrifft, ob nämlich alle Molekeln gleiche Leitungsfähigkeit haben oder nicht, so halte ich den Umstand, dass die Curven der Leitungsfähigkeiten verschiedenen Höhen zustreben, für einen deutlichen Beleg für die Richtigkeit der Ausicht des Herrn FKohlrausch: es komme einem jeden Salz eine bestimmte moleculare Leitungsfähigkeit zu.